If it's not what You are looking for type in the equation solver your own equation and let us solve it.
123+32.56t-4.9t^2=0
a = -4.9; b = 32.56; c = +123;
Δ = b2-4ac
Δ = 32.562-4·(-4.9)·123
Δ = 3470.9536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32.56)-\sqrt{3470.9536}}{2*-4.9}=\frac{-32.56-\sqrt{3470.9536}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32.56)+\sqrt{3470.9536}}{2*-4.9}=\frac{-32.56+\sqrt{3470.9536}}{-9.8} $
| 10-6x=4x-3+8x-2 | | 4x-1/5+x+4/2=4 | | ((x+1)/6)-((x+3)/4)=-1 | | ((x+1)/6)-((x-3)/4)=-1 | | P^2+12p-8=0 | | 1/2x^2-4x+8=0 | | 4(p-5)=20 | | 4×4x=7x | | 2/y-6=5/3-2y | | 4x4=7x | | 5+1×10=x | | 6x^2-8x+16=0 | | x+(X^2)=2400 | | -2x+7x=-5x | | 4a–12–3a+6=12 | | -6x-3.4=3x-0.2 | | (1.5x-2.4)^2-(5.2x^2-6.4)=0 | | x-1=7×(x-1) | | x/100(20)=10 | | 0=5w+6+18w+12w^2+13 | | 0.7w-+16+4w=27.28 | | 7x+2-9x=9(2x+7) | | 5-(x/2)=3x-16 | | 5+1*10=c | | (6x-1)(3x-2)=(6x+1)(3x+2) | | 20=2t-3t | | 2(x^2+6x-2)=0 | | (4x-4)(x+4)=0 | | 60/5*7-4=x | | (12x-3)/(3x-1)=0 | | 40500=38000(1+r(9/12)) | | -3-4x=3x-26 |